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By subjecting a dynamical system to a series of short pulses and varying several time delays, we can obtain
multidimensional characteristic measures of the system. Multidimensional Kullback-Leibler response function
(KLRF), which are based on the Kullback-Leibler distance between the initial and final states, are defined. We
compare the KLRF, which are nonlinear in the probability density, with ordinary response functions obtained
from the expectation value of a dynamical variable, which are linear. We show that the KLRF encode different
level of information regarding the system’s dynamics. For overdamped stochastic dynamics two-dimensional
KLRF shows a qualitatively different variation with the time delays between pulses, depending on whether the
system is initially in a steady state or in thermal equilibrium.
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I. INTRODUCTION

One of the most common ways to investigate the proper-
ties of a dynamical system is to study how it responds to
controlled external perturbations. The response of a system
to a weak perturbing field is related to its equilibrium fluc-
tuations by the celebrated fluctuation dissipation relation
[1,2]. The response provides a direct measure of system dy-
namics and fluctuations.

In a time-domain response measurement one uses a series
of impulsive perturbations (Fig. 1) and records some prop-
erty of the system as a function of their time delays. Impul-
sive perturbations make it possible to study the free-
dynamical evolution of the system during the time delays
unmasked by the time profile of the perturbing field. Further-
more, the joint dependence on several time delays can be
used to separate the contributions of different dynamical
pathways. Due to its dependence on multiple time delays this
method is termed multidimensional.

The response of a system is typically measured by the
expectation value of some operator [1-3]. This is a linear
functional of the system probability density (or the density
matrix for quantum systems). Multidimensional response
have had considerable success in nonlinear spectroscopy due
to the ability to control and shape optical fields. Applications
range from spin dynamics in NMR [4], vibrational dynamics
of proteins in infrared systems and electronic energy transfer
in photosynthetic complexes as probed by visible pulses
[5,6]. These span a broad range of time scales from millisec-
onds to femtoseconds.

Several nonlinear functionals of probability densities,
which have interesting physical interpretations, are known.

One such quantity is the Von-Newman entropy S(p)
=-Tr p In p. A related quantum nonlinear measure called the
concurrence serves as a measure of quantum entanglement
[7,8]. The Kullback-Leibler distance (KLD) or relative en-
tropy, Tr pg In py/ p, which compares one probability distri-
bution to another, is a nonlinear measure that had been found
useful in many applications. This paper aims at developing
multidimensional measures based on the KLD.

Numerous applications of the KLD differ in the probabil-
ity distributions involved. The ratio of the probability of a
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stochastic path and its reverse at a steady state has been
connected to a change in entropy [9-12]. For an externally
driven system a similar quantity was found to be related to
the work done on the system [13]. As a result, the KLD
which compares the path distribution to a distribution of re-
versed paths is a measure of the lack of reversibility of a
thermodynamical process.

For distributions in phase-space (as opposed to path
space), the KLD between the density of a driven system and
the density of a reversed process [ 14] or the distance between
the driven density and the corresponding equilibrium density
[15] (for the same value of parameters) were shown to be
bounded by dissipated work in the process. The transfer of
information through a stochastic resonance is quantified by
the KLD between the probability distributions with and with-
out the external input [16,17]. The ability of neuronal net-
works to retain information about past events was character-
ized by the Fisher information [18], which is closely related
to the KLD between a distribution and the one obtained from
it by a small perturbation.

We shall examine the response of a system to impulsive
perturbations which drive it out of a stationary (steady state
or equilibrium) state. The KLD between the distribution be-
fore and after the perturbation does not correspond to an
entropy or work. However, since it compares the perturbed
and unperturbed densities, it characterize how “easy” it is to
drive the system away from its initial state. In ordinary re-
sponse theory, one compared the expectation values of some
operator taken over the perturbed and unperturbed probabil-
ity density. This depends on the specific properties of the
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FIG. 1. Heuristic schematic of the process studied. A system is
prepared at an initial probability distribution p, and subjected to
impulsive perturbations. The kth pulse is centered at 7, and its
strength is denoted by s,. t;=7;,;—7; are the time intervals between
successive pulses.
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observed operator. The KLD is a more robust measure for
the effect of impulsive perturbations on the probability den-
sity. By expanding the KLD in the perturbation strength we
obtain a hierarchy of Kullback-Leibler response functions
(KLRFs). These differ qualitatively from the hierarchy of
ordinary response functions (ORFs), since they are nonlinear
in the probability density. The KLRF serve as a type of mea-
sures characterizing the dynamics and encoding different in-
formation than the ORF. For example, the second order
KLRF, which we connect to the Fisher-information, is found
to exhibit qualitatively different dependence on the time de-
lays, depending on whether the system is perturbed out of a
steady state or out of thermal equilibrium. This is in contrast
to the corresponding ORF. The fluctuation dissipation rela-
tion [1,2], which is linear in the density matrix, can also
distinguish between systems driven out of equilibrium and
out of a steady state. The KLD offers a different window into
this aspect.

The structure of the paper is as follows. In Sec. II we
describe the multidimensional measures and present the two
hierarchies of ORF and KLRF response functions. These are
then calculated using a formal perturbation theory in the cou-
pling strength to the external perturbation. In Sec. III we
show that for systems undergoing overdamped stochastic dy-
namics the nonlinear KLRF are naturally described using a
combination of the stochastic dynamics and its dual dynam-
ics. In Sec. IV we extend the results of Sec. III to discrete
Markovian systems with a finite number of states. Our re-
sults are discussed in Sec. V.

II. MULTIDIMENSIONAL MEASURES FOR NONLINEAR
RESPONSE BASED ON THE KULLBACK-LEIBLER
DISTANCE

We consider a system initially at a stationary state (either
equilibrium or a steady state), which is perturbed by a series
of short pulses, as depicted in Fig. 1. The probability distri-
bution describing the driven system at time 7, p(7), depends
parametrically on s;, the strength of the ith pulse, as well as
on the time differences between the pulses t,= 7, —7; with
Tne1 =T

Ordinary response theory focuses on the expectation
value of some observable,

(A0 =Trp(nA], (1)

and its dependence on the parameters s;, 7;. The lowest ORFs
are

HA)

R(r-m) = 2| 2)

9s; |s=0

KA
Rf]z)(T_ T Ti— T]) = < > 5 (3)
' 95958 | s=0
3) F(A)
R,:,'k(T— T Ti— TjpTj— Tk) = 959 s 4)
S Sj aSk s=0

and so forth. The time differences in Egs. (2)—(4) can be
expanded in terms of the time delays between the pulses,
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T— =2 _ RY) are used to investigate various properties
of the unperturbed dynamics, such as the existence of excited
modes and the relaxation back to a steady state.

Here, we focus on different, but closely related quantity.
Instead of studying an expectation value of an observable,
we focus on a quantity that compares the perturbed and un-
perturbed probability distributions. The KLD, also known as
the relative entropy, is defined as

D(pyll p) =Tr p, 2 = <1n@> . (5)
p Plo

The KLD vanishes when the two distributions are equal
D(pllp)=0 and is positive otherwise, D(p’llp)>0 for
p'(x) # p(x) [19]. Note that the KLD is not a true distance
since D(p’ llp) # D(pllp’) and it does not satisfy the triangle
inequality.

The KLD measures the dissimilarity between two distri-
butions. It had found many applications in the field of infor-
mation theory [19]. For instance, the mutual information be-
tween two random variables x,y is D[P(x,y)lI P(x)P(y)],
where P(x,y) is the joint distribution while P(x) [ P(y)] is the
marginal distribution of x (y). In the present application the
Kullback-Leibler distance is used as a measure for the devia-
tion of the driven system from its initial state.

In a manner similar to the definition of the ORF, we de-
fine a KLRF hierarchy by taking derivatives of the KLD with
respect to pulse strengths and displaying them with respect to
the time delays

oD Jd
QV(r-7)= — =< 1 > , (6)
98; | s=0 dsi P ls=o/ 0
#D &
Q(r-r.1— 1) = =( = ’
d5;9Sjls=0 \ 95:98; P ls=0/ 0
(7)
Q(?)(T— TTi— THTi— 7)) = ﬂ
ik v 2 k z?siﬁsjé’sk s=0
=\ ——In— .
d5;9s;dsk P ls=0/ 0
(®)

All the derivatives are calculated at s=0, and we have used
the relation limg_,q p(7)=p,. This is also true for all other s
derivatives in the following. To keep the notation simple we
will not state this explicitly. Higher order KLRF are defined
similarly. It is important to note that the ORF are linear in p,
whereas the KLLD are nonlinear. We thus expect the KLD to
carry qualitatively different information about the dynamics.

The second derivative [Eq. (7)], known as the Fisher
Memory (or information) matrix, plays an important role in
information theory since the Cramer-Rao inequality means
that it is a measure of the minimum error in estimating the
value of a parameter of a distribution [19]. The Fisher infor-
mation has been used recently to analyze the survival of
information in stochastic networks [18].
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Conservation of probability implies that the first KLRF
vanishes

d d
le)(r— T)=— J dxpy—In p=— f dx—p=0. (9)
ﬁsi (9S[
The second derivative, the Fisher memory matrix, is given
by

dp d dlnpdln
Qi (7~ Ti»Ti_Tj)zfdxp_l_p_p_<_p_p> :
0

0 &Siésj_ (9Sl~ 5sj

(10)

A straightforward calculation allows us to recast the third
order derivative of D in terms of products of lower order
derivatives

A

<(?lnp(921np> <(91npr921np>
- ds; ds;d sy 0+ as; ds;dsg/ o
<(71np(921np> <(?lnp(91np(91np>
i ds 9s;ds; 0+ ds; ds;  Isy 0
(11)

In what follows the derivatives will be calculated perturba-
tively in s;. It is important to note that the Nth derivative of
In p has contributions from interaction with at most N pulses.
The contribution from the linear component, which interacts
with N pulses, has the same structure of the perturbation
theory for observables (which is also linear). However, since
In p is a non linear function of p the Nth derivative contains
a nonlinear contribution which is a product of lower order
contributions for p. The KLRF encode qualitatively different
information about the system dynamics in comparison to the
ORF.

The time evolution of the probability distribution is given
by

QN (7= 7,7, = 7,7, = 7,)

d

_p—— & T,
o=~ L@p. (12)

This formal equation is quite general and can describe either
Hamiltonian (Unitary) or stochastic dynamics where the op-

erator £ will accordingly be the Liouville or the Fokker-
Planck operator.

For a system subjected to a time-dependent weak pertur-
bation we can write

L(D=Ly+ L' (7, (13)

where we assume that the unperturbed system is time inde-
pendent and is initially in a steady state, py, so that

ﬁ0p0=0. We consider an impulsive perturbation of the form
L'(D==2 5;8(r— 1)Ly, (14)
i=1

where ﬁA describes the action of a pulse on the probability
distribution and s; is the overall strength of the ith pulse.
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Using these definitions, the state of the system at time 7
can be expanded as a power series in the number of interac-
tions with the pulses

p(7)=po+ Opi+ Opy+

n
=po+ 2 5;8V(x;7- 1)
i=1

noi 5.
+ > sisj<1 - —2’1>S(2)(x;7— ToTi=T)+ .

i=1 j=1
(15)

The partial corrections for the density, SY), appearing in Eq.
(15), contain all the information necessary for computing
both the KLRF and ORF. They are given by

5(1)(96;1‘)Efdx1dxzuo(x,xz;t)EA(xz,x1)P0(X1), (16)

SA(x:t' 1) = f dxy - dxgldo(x,x451") L 4(x4,25)
XU (x3,X258) L4 (X2, x1) polxy) - (17)

Here Uy(7—7')=exp[—(7—17')L,] is the free propagator of
the unperturbed system. Conservation of probability requires
that [dx8p,(x)=0, which, in turn, means that [dxS"”=0.

Equations (15)—(17) can be used to calculate the logarith-
mic derivatives, which then determine the KLRFs. We will
only need the first two logarithmic derivatives, which are
given by

dlnp 1 ddp, 1
ds; po 9s;  po(x)

SY(x;7-7) (18)

and

dlnp 1 &#8p, 1 38p ddp,

&SiaSj_pOaSi[?Sj pg (951‘ &SJ
1
po(x)
1
-5 =SV r-)SV(xir- 7). (19)
Po(x)

To calculate the ORF, we substitute Eq. (15) into Eq. (1),
resulting in

=——8%x; 77,71 - 7)

*® T Ty o)
<A>T:<A>O+E dTnJ dTn—l "'f dTls(Tn)“'S(Tl)
n=1 Y1, 70 )

XRMW(7- Ty Ty = Tyls ee- s Ty — T1)- (20)

It is interesting to compare the KLRF with the ORF. We
Calculate QY and RY for j perturbing pulses. To leading
order, we find
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Q(ll)(tl) =0,

RWD() = J dxA(x)SW(x;1,). (21)

At the next order, we compare the Fisher information to the
second-order ORF,

Qﬁ%)(tz,tl)zfdxpal(x)S“)(x;tl+t2)S(‘)(x;t2) (22)

and

R ty,1,) = f dxA(x)SP(x;1s,1,). (23)

The nondiagonal elements of Ql(f) depend on the two delay
times. Expressions for the third order response functions are
given in Appendix B 1.

Both RY) and Q) depend on the same set of j time in-
tervals with some important differences. Q") vanishes, while
the linear response R does not. Q(z) and R® have a dif-
ferent structure: R can be calculated from the second order
correction to the density (or S) while Q@ is determined
from a product of S!s describing the first-order interaction
with different pulses. This difference reflects the non-linear
dependence of the KLRF on p and also applies to higher
orders.

We have chosen to use D(pyllp) as the measure for the
effect of the perturbations. D(pll py) would have been equally
suitable. However, as discussed in Appendix A, the leading
order of both KLDs in the strength of the perturbation, i.e.,
their Fisher information, coincide. Therefore all the follow-
ing results pertaining to the Fisher information would hold
for either choice.

III. APPLICATION TO OVERDAMPED STOCHASTIC
DYNAMICS

In the following we use the formal results of Sec. II to
calculate the leading order ORF and KLRF for a system
undergoing overdamped stochastic dynamics. We show that
the Fisher information is related to a forward-backward sto-
chastic process. The backward part is driven by the py-dual
process, which will be simply referred to as the dual in what
follows. The Fisher information is found to exhibit qualita-
tively different properties for systems perturbed from equi-
librium or from a steady state. We also use the eigenfunc-
tions and eigenvalues of the dynamics to derive explicit
expressions for several low-order ORF and KLRF.

In stochastic dynamics the probability density plays the
role of a reduced density matrix, which depends on a few
collective coordinates. In this reduced description the en-
tropy —Tr p In p typically increases with time. This should
be contrasted with a description which includes all the de-
grees of freedom, where the dynamics is unitary and the
entropy does not change in time. For completeness unitary
dynamics is discussed in Appendix A.
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A. Fisher information for systems perturbed
out of equilibrium vs steady state

The Fisher information can be represented in terms of the
dual stochastic dynamics. This interesting property reflects
its non-linear dependence on p. We examine a stochastic
dynamics of several variables x; given by

§=Fi(x> +E(1x). (24)

Here we use the Ito stochastic calculus.! The noise terms are

assumed to be Gaussian with
(&DE ) =Gyolt-1"). (25)

with G(x) as a symmetric positive definite matrix. While for
many systems this matrix does not depend on the coordinate,
Gij=gkaT5,j, this assumption will not be used in what fol-
lows.

Equation (24) is equivalent to the Fokker-Planck equation

—=—2—sz 2_

29x; 9 x;

l]p - 'COP (26)

In what follows we present the dual dynamics, which can be
loosely thought as the time reversed dynamics: it have the
same steady state, but with reversed steady-state current. We
consider the current density

Ji=Fip- 2 Giip. (27)

2(9

The Fokker-Planck equation can be written in terms of the
current,

L 28
ot E ox; 28

l

The steady state is the solution of

ﬁopo = 0 (29)
We write
po=e", (30)

which defines ¢,. For systems at equilibrium ¢, is simply
the potential. However, this is not the case for general steady
states. The steady-state current can be written as

19
I =Fipy— 2 Ea_GijPO
j =%
3sz Iy
=—> G, 2GF — | po.
E 1(2 k™ E &)CI o"xj 0
(1)

After some algebra, the generator of the stochastic dynamics

'"The Ito and Stratonovich calculus offer two different recipes of
interpreting Eq. (24). Both methods are equally viable as long as
they are used in a consistent manner. Details can be found is Ref.
[22].
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can be written in terms of the steady-state density and cur-
rents [20]

1

) J P p)
Lop=> —e?]Vp—=> —G, e %—ePp. (32
0102(9 ,922%, Soehe (32)

i 0X; ij j

The dual dynamics is defined by

ap
=L, 33
P p (33)

with

L= poLips!. (34)

A straightforward calculation gives

— = , 35
Lip= E Fip- 22& % Gyp (35)
with
Fl=—F+ e ¢00—Ge 0, (36)
J /

It is a simple matter to verify that the dual dynamics has the
same steady state as the original one, but the steady-state
currents have opposite signs. It can be simulated by integrat-
ing the Ito stochastic equation;

dx;
=L =F(x) + &%), (37)
dt
The dual dynamics reverses the non conservative forces in
the system. This relates the joint probability to go from one
place to another in the original dynamics to the joint prob-

ability of the reversed sequence of events in the dual dynam-
ics [20]

Py(x’,11|x)pp(x) = PU(x,1;|x") py(x”). (38)

The left-hand side of Eq. (38) is the joint steady-state prob-
ability to first the system at x and at x’ after a time #,. The
right hand side is the joint probability of the reversed se-
quence of events but for a modified dynamics. When this
modified dynamics is the dual these joint probabilities be-
come equal.

We next turn to discuss the system’s response to a series
of impulsive perturbation. We assume that the perturbation is
of the form

Lap=—2————p. (39)

with A(x) as a potential field perturbing the system. Using
Eq. (16) we have

1
Si(x3tp) = f dXOP()(XlJl|Xo);/B(X0)P0(X0), (40)

where
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Y
B(X)EEF—;%. (41)

i

With the help of Eq. (38), we obtain

1
Sy (xy,11) =fdxo;B(Xo)Pd(Xo,ll|X1)P0(X1)- (42)
We now have all the tools needed to compare the ORF

and KLRF for overdamped stochastic dynamics. The
leading-order response function is given by

1
Rt =" f %A (%1) P11 B0 o),

(43)
while QW=0. At the next order, we have
QP (1) = yzf dx,dx,dxoB(x,) PY(xp,1|x,)
X Po(X 1,11 + 1|X0) B(Xg) po(Xo) (44)

and

Ry(ty,1)) = EfdxzdxldXoA(Xz)Po(XzJ2|X1)

X 2 { ﬂP()(Xl o1y |X0)]B(X0)P0(X0) (45)
dx li dx X1i

Some insight into the structure of different response func-
tions can be gained by representing them as ensemble aver-
ages over stochastic trajectories. The first-order response
function can be simulated directly using stochastic trajecto-
ries of the original dynamics. The appearance of a derivative
of the conditional probability complicates the direct simula-
tion of R,. It may be possible to circumvent this difficulty
using the finite field method, where one combined simula-
tlons with and without a finite but small perturbation [21].
Q( can be simulated with trajectories which follow the
orlglnal dynamics for time ¢, +1, and then the dual dynamics
for time t,.

Systems at equilibrium are self-dual, allowing to substi-
tute [dx;PUX,,1,|X1)Po(X;, 11 +12|Xo) = Po(Xa, 1, +215| %) in
Eq. (44). As a result the Fisher information only depends on
a single time variable #;+2f,. This is in contrast to systems
which are perturbed from a nonequilibrium steady state,
whose Fisher information is qualitatively different and is a
two-dimensional function of ¢, and ¢,.

For the self-dual case Q(lzz) has the same structure as R,
up to a replacement of A(x) with B(x). However in the gen-
eral, non-self-dual case, the structure of le is manifestly
different than that of R() and R,

B. Eigenfunction expansion of the Fisher information

An alternative approach for the calculation of the Fisher
information, as well as higher-order KLRF, uses eigenfunc-
tion expansions for the density p. It will be sufficient to

examine a simple one dimensional model where L, is a
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Fokker-Planck operator and the perturbation is given by Eq.
(39).

The propagation of the unperturbed system can be de-
scribed in terms of the eigenvalues and eigenfunctions of ﬁo.
The right eigenfunctions satisfy

Lop,=An)p,. (46)

Similarly, the left eigenfunctions, ¢, satisfy ¢,Lo=A(n)g,. It
is assumed that the right and left eigenfunctions constitute a
biorthogonal system, that is,

J dxq (X) py(X) = G- (47)

Any probability density can be expanded in terms of right
eigenfunctions,

p(x) = 2 Cop,(x), (48)
with

Cy= J dxq,(x)p(x). (49)

We consider systems perturbed out of thermal equilib-
rium, with a probability density py(x). In this case the left
eigenvalues are simply related to the right eigenvalues. For
variable x which is even with respect to time reversal, this
relation takes the form [22]

pn(x) = C]n(x)Po(x) . (50)

As a result, one can use only the left eigenfunctions, which
in this case satisfy the orthogonality condition

f dan(x)('Im(x)pO(x) = 5nm' (51)

We note that gy(x)=1 and A(0)=0 correspond to the equi-
librium distribution.

Our goal is to calculate the response of the system to a
perturbation with a coordinate dependent operator A(x). Sev-
eral types of integrals appear repeatedly in the calculation,
and it will be convenient to introduce an appropriate nota-
tion. One comes from the need to decompose the probability
distribution into eigenstates after each interaction with a
pulse

By = f dxqmu)ﬂ%qn(x)po(x)]

aq,, 0A

_- f a2 (o), (52)

where integration by parts was used in the second equality.
[We assume that py(x) falls of fast enough to eliminate
boundary terms.] The calculation of the response also in-
volves an evaluation of the average of an observable, which,
in the current setting, leads to integrals of the form
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CAnEJdXA(x)qn(x)pO(x)- (53)

It is straightforward to calculate S" and S with the help
of Eq. (52). We find

Si(x3ty) = 2 Byoe Mg, (x) po(x) (54)

and

SOxstpty) = 2 ByyuBoe 217G (4) po(x).

(55)

We now calculate the first few ORF and KLRF. The first-
order response functions is

Ry(ty) = 2 CanBoe™ 0. (56)

Similarly, the second-order response function is given by

RZ(IZ’II) = 2 CAmanBnOe_A(n)ll_A(m)tz- (57)

mn

R? should be compared to the KLRF of the same order,
namely, the Fisher information

Q1 (t,1)) = 2 Brge M lne2ta], (58)

which is calculated with the help of Egs. (22) and (51).
Again, the Fisher information of systems perturbed out of
equilibrium depends only on f;+21,.

For a system initially in a steady state the Fisher informa-
tion is

Q(lzz)(fz,l‘l) = ) BoB,e N liral-Amry

nm

X f dxpy" (x)p,(x) pyu(x).. (59)

However, since the relation Eq. (50) does not hold in this
case, the integral in Eq. (59) does not vanish for n# m, and
the Fisher information becomes a two-dimensional function
of ¢; and f,.

Q(fz); and R are calculated in Appendix B 2, where it is
shown that Q(& is a three-dimensional function of all its
time variables. This qualitatively different signature of sys-
tems initially at steady state vs equilibrium is unique to the
Fisher information due to its quadratic dependence on Jp. It
does not apply to higher-order quantities, such as Q.

The eigenfunctions for a simple example, of an harmonic
oscillator with an exponential perturbation, are presented in
Appendix C.

IV. MASTER EQUATIONS, DUAL DYNAMICS, AND THE
FISHER INFORMATION FOR DISCRETE SYSTEMS

The description of the KLRF in terms of a combination of
the regular stochastic dynamics and its dual holds also for
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Markovian systems with a finite number of states. Below we
derive a simple expression for the Fisher information of a
stochastic jump process in terms of the dual dynamics of the
original process.

A. Dual dynamics of discrete Markovian systems

Consider a system with a finite number of states, under-
going a Markovian stochastic jump process described by the
master equation

P=TRP. (60)

P is a vector of probabilities to find the system in its states
and R is the transition rate matrix [3]. Its off diagonal ele-
ments are positive, Rij>0 for i #j, and express the rate of
transitions from state j to i, given that the system is at j. The
diagonal elements satisfy ~;R;;=0. We further assume that
there exist a unique steady state, P", satisfying

RPY =0, (61)

and that at this steady state there is a nonvanishing probabil-
ity to find the system at each of the states i, PE”#O. The
master equation is one of the simplest models for irreversible
stochastic dynamics. Below we briefly describe some of its
relevant properties, such as the backward equation and its
dual dynamics.

One can define an evolution operator

P(1) =UP(0), (62)

which satisfy the equation of motion
J
(9_tul =RU,, (63)

with the initial condition Uy=1.

For this model a dynamical variable A is a vector with a
value corresponding to each state of the system. Its expecta-
tion value is given by

(A)=A-P(0)= 2 AP (1). (64)

Instead of calculating this average by propagating P, one can
define a time-dependent dynamical variables, A(), such that
(A),=A(r)-P(0). This is the analog of the Schrodinger and
Heisenberg pictures in quantum mechanics. The equation of
motion for A(¢) is easily shown to be

I A =RIAQ). (65)
ot

This equation is known as the backward equation, which
turns to be related to the dual dynamics. (The backward
equation is also written as a function of an initial rather than
a final time.) R and R' have the same eigenvalues. How-
ever, the roles of the right and left eigenvectors are inter-
changed and A(r) decays to a uniform vector with at long
times.

Let us now define a diagonal matrix II, using Hi[=P§‘Y).
The dual evolution is then defined as
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RY=TIRTI. (66)

The fact that II is built from the steady state of R, P*, guar-
anties that R¢ is a physically reasonable rate matrix, that is,
that is satisfies E,-Rj-ij:O. The dual dynamics describes a
physically allowed process which has the same steady state
as the original process it was derived from. However, at this
steady state the dual currents have opposite signs compared
to the steady state currents of the original dynamics. A pro-
cess is self-dual, that is, RY=R, if and only if it satisfies
detailed balance. Self-duality is therefore related to being in
thermal equilibrium.

B. Perturbation theory and the Fisher information

Consider a system subjected to several impulsive pertur-
bations

R(D=Ro+ 2, s,R47—17,), (67)

where R, corresponds to some physical perturbation A. Here
the free evolution is given by

U =", (68)

Similarly the evolution during an impulsive perturbation can
be described by

P(7,+ €) = e**P(7,—€), (69)

where € is arbitrarily small.

We expand the exponent in Eq. (69) and collect all terms
of the same order in s,. The expression for the Fisher infor-
mation, following Eq. (22), is

1
QB (1,11) = 2 ZURAP) WUy R (70)

This expression can be simplified by writing one of the
propagators in terms of the dual process using the relation

RV = T171 R (71)
After some algebraic manipulations, we find

Q(lzz)(tle) — E (RZeRdIZeRO(tIHZ)RAPs)i. (72)

In Eq. (72) we have defined R4=TIR}ITI"!. R4 is not the
dual of R, since I is not composed of the eigenvector of R 4
which corresponds to a vanishing eigenvalues. (II is com-
posed of the eigenvalue of R.)

Equation (72) is the analog of Eq. (44) for discrete sys-
tems. It demonstrates that for this model the fisher informa-
tion can be simulated using a combination of the ordinary
process and its dual. However one must also include a (pos-
sibly artificial) dual perturbation, Rfi, which can nevertheless
be computed from the known physical one. As before, Eq.
(72) shows that the Fisher information, for self-dual systems,
is a function of #;+21t,.

As a side remark, the model considered here has only
even “degrees of freedom” under time reversal. More general
models may also include odd degrees of freedom, such as

031116-7



SAAR RAHAV AND SHAUL MUKAMEL

momenta. In that case one may speculate that there would be
anti-self-dual systems whose dual turns out to be the time
reversed dynamics. This would lead to a Fisher information
depending on #; alone, as is the case for unitary dynamics.

V. DISCUSSION

In this work we have studied a system driven out of its
steady state by a sequence of impulsive perturbations. We
have defined a set of measures for the response of the system
to the perturbation, the KLRF, which are given by the series
expansion of the Kullback-Leibler distance between the per-
turbed and unperturbed probability distributions.

At each order the KLRF and ORF depend on the same
time differences between the pulses. However, there are im-
portant differences stemming from the nonlinear dependence
of the KLRF on p. The expression for the KLRF, for instance
Eqgs. (22) and (B2) reveal quantities which can be simulated
using several trajectories which end at the same point. We
have shown that a simpler, but equivalent description exists.
It uses the dual dynamics which allows to “run some of the
trajectories backward.” This description is especially appeal-
ing for the Fisher information. Instead of viewing the Fisher
information as composed over sum of pair of trajectories
joined at their end point one can view it as an average of
contributions of a single forward-backward trajectory.

Another difference between the KLRF and the ORF has to
do with the appearance of derivatives of conditional prob-
abilities, which for deterministic systems would correspond
to groups of very close trajectories. These first appear in S?,
see for instance Eqs. (45) for R®. The nonlinear character of
the KLRF means that such terms appear in comparatively
higher order of the perturbation theory. For example, S®
contributes to R? but not to the Fisher information. Instead
it first contributes to Q3%

We have demonstrated that the Fisher information be-
haves in a qualitatively different way depending on whether
the system is perturbed from equilibrium or from an out-of-
equilibrium steady state. For the classically stochastic sys-
tems considered here we have seen that in the former case
Q(lzz)(tl,tz) =f(t,+2t,). That is, the Fisher information is a
one-dimensional function of the two time delays. This quali-
tative difference results from the self-duality of equilibrium
dynamics, which is another expression of the principle of
detailed balance. Q(132)3 does not show a similar reduction in
dimension [see Eq. (B6)]. This property is special to the
Fisher information.

We have focused on the properties of the Fisher informa-
tion for overdamped stochastic dynamics. Do other types of
systems exhibit similar behavior? In Appendix A we con-
sider deterministic Hamiltonian systems. In that case the uni-
tary dynamics results in a Fisher information which depends
only on the time 7. It will be of interest to study how (not
overdamped) stochastic systems bridge between the over-
damped and unitary limits.

We showed that the KLRF can serve as a useful measure
characterizing the system’s dynamics. They encode informa-
tion which differs from the information encoded in the ORF.
This is demonstrated by the ability of the Fisher information
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to distinguish between systems perturbed out of equilibrium
or out of a nonequilibrium steady state. We expect other
useful properties of the KLRF to be revealed by further stud-
ies.
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APPENDIX A: UNITARY DYNAMICS

For completeness, in this appendix we discuss the appli-
cation of nonlinear response theory to deterministic Hamil-
tonian systems. We use simple examples to clarify the rela-
tion between the response of a system and the Kullback-
Leibler distance. The Hamiltonian of the system is assumed
to be of the form H="H,—s(7)A, where A is the perturbation.
We start with some general comments stemming from the
fact that the dynamics in phase space is an incompressible
flow.

1. General considerations

The state of a classical system is described by its phase-
space density p. It is important to note that this is the full
probability density, which includes information on all the
degrees of freedom. Let us denote the propagator of the clas-
sical trajectories by & so that x(7)=h(x(0)) where x denotes
a phase-space point (all coordinates and momenta). Simi-
larly, the propagator for the probability distribution is de-
noted by U(7). Liouville theorem tells us that phase-space
volumes do not change in time. As a result, there is a simple
relation between the phase-space densities at different times,

p(x,7) =U(7)p(x,0) = p(h_x),0) = p(x(0),0). (A1)

The density is simply transported with the dynamics in phase
space. The density at 4,(x) at time 7 is equal to the density at
X at time zero.

This property of the phase-space dynamics have an inter-
esting consequence. Any integral whose integrand depends
locally on p alone is time independent since the values of the
integrand are just transported around by the dynamics. An
interesting example is the entropy function

S(n=- f dxp(x,7)n p(x, 7). (A2)

Let us change the integration variable to x,=/h_,(x), which is
just the phase-space point which would flow to x after a time
7. Liouville theorem assures us that the Jacobian of the trans-
formation is unity and therefore

031116-8



MULTIDIMENSIONAL MEASURES OF IMPULSIVELY ...

g(7') == J dxop(xo,0)In p(x,,0) = go, (A3)

where we have used Eq. (Al). It is clear that this entropy
does not depend on time.

Equation (A3) is a result of the unitary evolution in phase
space. It connects with all the intricate problems related to
the emergence of macroscopic irreversibility out of micro-
scopic reversible dynamics. This deep problem is beyond the
scope of the current paper. Such problems are circumvented
when one uses a reduced probability density, whose dynam-
ics is irreversible to begin with.

Unitary dynamics lead to an interesting result for the re-
verse Kullback-Leibler distance

D(pll pp) ETrpln£=Trplnp—Trpln po-  (A4)
p

0

We have seen that the first term is a constant of the motion.
Assuming a Hamiltonian system initially in equilibrium
po=e"P"0/Z. We have

D(pll po) == Sy + Tt pB(Hy — Fo) = B Tr(p — po)Hy,

(A5)

where Fo=—kgT In Z is the free energy of the initial equilib-
rium state. D(pllpy) is therefore linear in p, and thus it is
equivalent to a calculation of response functions.

The general comments above raise two interesting points.
First, the fact that terms such as Tr p In p are constant means
that their expansion in powers of pulse strengths s; turns out
to have only the constant term, all other terms in the expan-
sion must vanish.

The second point of interest has to do with the relation
between the Kullback-Leibler distance and its reverse. Gen-
erally, D(pllpy) # D(pyllp). We are interested in systems per-
turbed by a series of pulses and compare the initial and final
distributions. In that case we can use unitarity to change
variables from the phase-space points at the final time to the
points at the initial time which are connected to it by the
dynamics. This gives

R B R
PolX X0,
=D(py I p). (A6)

Here po(x(7))=p(xg,0), that is, p is the density that would
evolve to the equilibrium density under the influence of the
pulses. It is not equal to p(x,7), which tells us that the dis-
tance and its reverse are not equal.

While in general the distance and its reverse are not equal,
when the distance between the distributions is small, it is
easy to show that their leading order expansion in
Sp=p—p, is the same. Loosely speaking
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2
Dipylp) = f dx(‘;io . 0<5p3>>, (A7)

2
D(p |l py) = %f dx(iio + O(5p3)>. (A8)

We can deduce that the Fisher information, which is deter-
mined by this leading order, could be obtained from a calcu-
lation of response for systems with unitary evolution. (Since
it could also be obtained from the reverse distance.)

Our last general point is also related to unitarity, but has
to do with the Fisher information. According to Eq. (22) the
Fisher information is built from two partial densities. (More
accurately, density differences.) These evolve with respect to
the same Hamiltonian 7, between interactions with the
pulses. As a result, the integral in Eq. (22) do not depend on

t,, for the same reason that caused the entropy S to be time
independent. We find that

Q1 (111 = Q3 (1)), (A9)
as a result of the unitarity of the phase-space dynamics.
Similar independence on the final time interval would also

appear for higher-order terms in the expansion of the
Kullback-Leibler distance.

2. Single Harmonic oscillator

The simplest system that can serve as an example is a
single Harmonic oscillator

p2
Ho=——+ M(22 2 A10
=5 t5 0. (A10)

We take the perturbation to be
A(Q) = ae™%, (A11)

For this system it is trivial to solve for the free evolution

O(7) =0(0)cos Q7+ %Sin Qr,

P(7)=P(0)cos Q7—QOMQO(0)sin Q7. (A12)

This relation can be inverted, expressing P(0),Q(0) in terms

of P(7),0(7)

_ P(7) .
0(0) = O(7)cos Q77— Y05 sin Q,

P(0) = QMQ(7)sin Q7+ P(7)cos Q7. (A13)

Equation (A13) will be useful when one propagates probabil-
ity distributions in time.
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The equilibrium distribution of the Harmonic oscillator is
a Gaussian

po= 2W£BT o~ BPH2M-BMO?0% 2 (A14)
We also note that
Ba  _
Lapo=1{A.po} =7 o-Pe™%py, (A15)

0

is the linear order correction for the density just after inter-
action with one pulse.

SP(Q,P;ty,1) =U(t,) LSV
2

0

X {— ﬁ(QMQ sin Qr, + P cos Ot,) +

Xexpy — Qg[cos Qt, +cos Q1 +1,)] +

0
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To calculate SV we need to propagate Eq. (A15). With
the help of Egs. (A1) and (A13) we find
SY(Q,P;1) = ﬂ(QMQ sin Q¢ + P cos Q1))
MQ,

Xe—l/QO[Q cos Q1—P/MQ sin Qtl]Po(Q,P) )
(A16)

In the derivation we have used the fact that p, is invariant
under the evolution with respect to H,,.

To calculate S we operate with £, on S and then
propagate the resulting correction for the density for a time
interval f,. A straightforward calculation leads to

=- %{cos Q1 +[QMQ sin Q(t, + 1) + P cos Q(t; +1,)]

1
0 MQSin Qtl}}
0

[Sin Qtz + sin Q(tl + lz)]}po

700, (A17)

We now turn to calculate the first two ORF, using Eqs. (21) and (23). The calculation of R" is cumbersome but

straightforward.
(1) (1) ’ 1
RW(1)) =fdePA(Q)$1 (0,P:t)) =— ——sin Qt; exp| —————(1 +cos Q1)) |. (A18)
OMQ; BMQO;
The calculation of R? is more involved, and we only include the final result
R (t,,1)) o in Q1,[sin Qt; + sin Q(¢; +1,)] ! 3+ Qt, + cos Oty + cos O, +1,)
,t) = ———sin sin sin exp| ——— ) = +cos cos cos .
2,01 MZQZQ?) 2 1 1+t p MBQZQS 2 1 2 1+t
(A19)
I
We would like to compare these response functions to the @ I 0
KLRF and in particular to the Fisher information, which can Q15 (ta,1)) = ,Bo,,_th (). (A21)

be calculated using Eq. (22). The calculation can be simpli-
fied by using the classical coordinates right after the second
interaction with the pulse as integration variables. Due to
unitarity, the Fisher information only depends on the time
difference 7, see also the discussion in the previous subsec-
tion.

We get
D)= L% cos Uty =~ 2 )
le(tz,n)—MQ(z) cos tl_ﬁMﬂngsm t
1
X — (1 + Q) |. A20
eXp{ﬁMﬂng( cos 1)} (A20)

This expression seems similar to the first-order response
function. One can indeed show that they are related by

It will be interesting to check whether this expression could
be generalized to any Hamiltonian system (with unitary dy-
namics).

APPENDIX B: THIRD ORDER ORF AND KLRF

In the main text we have calculated the ORF and KLRF to
second order. In the a%)pendix we present the third-order
quantities, R® and Q(1323.

1. Perturbation theory

Following the calculations performed in Sec. II, the third-
order response functions are given by
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R(t3,15.1)) =JdXA(X)S(3)(X;13J2J1) (B1)

and

Q(132)3(t3,t2,t1)=fdx{pal(x)[S(')(x;tl+t2+t3)8(2)(x;t3,t2)

+ S(l)(x;tz + t3)8(2)(x;t3,t1 + tz)

+ SV (x;13)SP (w3 15+ 1,1

- ZPEZ(X)S(I)(X;H +1,+ 1)

XSW(x;t, + 1) SV (x; 1)}, (B2)

where

8(3)(X;t3,t2,t1) = f dxl te dXGUO(X,XG;t3)£A()C6,X5)

XZ/{O(Xs,X4 5 fz)l:A(X4,X3)
X Uo(x3,%2311) L4(x2,%1)po(xy) . (B3)

2. Eigenvalue expansions

Here we present expressions for the third order ORF and
KLRF in term of the eigenvalues and eigenfunctions of the
stochastic dynamics. At high orders the nonlinear character
of the contributions to the Kullback-Leibler distance result in
integrals with products of several eigenfunctions. Here we
will only need the one with three eigenfunctions

jnml = f dXQn(x)qm(x)ql(x)pO(x)' (B4)
The third order ORF is given by

R(3)(t3’t2’tl) = 2 CAlBlmanBnOe_A(n)tl_A(m)tz_A([)t3'

Imn
(B5)

This ORF should be compared to the third order KLRF,
which is calculated using Eq. (B2). We find

Q(132)3(f3,t2,51) = B 0By Brole” N i2g=Amliy+24215]

mn

+ e—A(n)[tl +t2]e—A(m)[12+2t3]

+ e—A(n)tle—A(m)[t2+2t3]}

- 22 B”OBMOBZOJnmle_A(n)[t1+’2+t3]

nml

X e—A(m)[t2+z3]e—A(1)z3 ) (B6)

The expression for Q§32)3 presented in Eq. (B6), has three
terms in which the orthogonality condition (51) has been
used, pointing to a reduction in dimension in the time depen-
dence of this specific term. However, the time combinations
in these terms are all different. In addition, the fourth term in
Eq. (B6) clearly depends on all its time variables. We con-
clude that in contract to the Fisher information, the higher-
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order KLRF depend on all their time variables. The reduction
in dimension is therefore specific for the Fisher information.
It results from the fact that it is built out of a single product
of two density corrections.

APPENDIX C: THE OVERDAMPED HARMONIC
OSCILLATOR

In this appendix we consider a simple example of an over-
damped harmonic oscillator with a potential 1/2MQQ?, with
a perturbing potential A(Q)=ae %, For this system it is
possible to write explicit expressions for the eigenvalues and
eigenfunctions of the Fokker-Planck operator, as well as to
perform several of the integral, defined in Sec. III. In this
case

. 19 d

Lop=———| MQ*Qp + kyT— } (C1)

Y VﬁQ[ Op+kg é,QP
n a J
Lip=———[ep]. Cc2
AP Qow?Q[e pJ (C2)

This model has been studied extensively [22]. The equilib-
rium density is given by

M’ MO%2k,TQ?
=\/T——e 5107 C3
po(Q) ZﬂTkBTe (C3)

The left eigenfunctions and the eigenvalues of this model are

1 MQ?
7.(Q) =/ ﬁ%(Q \/ 2ka>, (C4)

MQ?
n. (C5)
Y

An) =

Here, H,, are the Hermit polynomials.
The following properties of the Hermit polynomials

dH
= =2nH, (x), (C6)
dx
dﬂ
H,(0)=(=1)e"—=e™, (e)
dx

together with the exponential form of A(Q), allow to com-
pute some of the integrals defined in Egs. (52) and (B4)
explicitly.

For instance,

Can=a f dQe™%Coq,(0)py(Q)

Y 2nl ! f dye VIOV HRTMV ()0 (C8)
n.

One can substitute Eq. (C7) for the Hermit polynomial and
use integration by parts. This leads to
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2kpT \"? P
2 vQ MQ? Ye

% ¢=07Q0) \e’ZkBT/MQZ. (C9)

CAn = a(_ 1)n

This is a Gaussian integral which is easily evaluated to give

2kBT>"/2 2002
Co=(=1)" kpgT/2Q,M ) )
An ( ) [e4 2y, 'Q (MQZ
(C10)
One can also easily calculate the integrals
dq, 0A
- | d -
f Q0 90 QPO(Q)
2 -
MQ f dyH,_,(y)e™ )/QO)\ZkBT/MQZ
T2l VQo N 2k, T
(C11)

by the same technique. One finds
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/2-1
Byo= (1)1 n__a <2k T>n KBT2O0MO?

V2! YO\ MQ?
(C12)

Comparing Egs. (C10) and (C12), we see that for this
model

MQ?

/_CAn

— (C13)
vkgT\ T

Bn():—l’l

As a result, there is a simple relation between the Fisher
information and the first-order response function,

Ry

Cl4
o (C14)

QR(1.1)) =
1 —t 1+212

This relation is a special result for this model, and is not
expected to hold for other systems.

One can also obtain explicit results for 3, with nonvan-
ishing indices. However, the calculation and the result are
quite cumbersome and are omitted. We were not able to cal-
culate 7,,,; explicitly.
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